

Date:

PF 1

Prime Numbers

Instructions: Determine if the number given is a Prime Number. You can do this by testing for divisibility. (For the exercises on this page, you only need to try divisibility tests for 2,3,and 5.) Mark the correct box.

1 2	⊠ Prime □ NOT Prime	2 4	PrimeNOT Prime
3 3	➢ Prime □ NOT Prime	4 11	➢ Prime □ NOT Prime
5 15	PrimeNOT Prime	6 17	Prime NOT Prime
7 10	PrimeNOT Prime	8 8	PrimeNOT Prime
9 7	➢ Prime □ NOT Prime	10 9	PrimeNOT Prime
11 6	PrimeNOT Prime	12 12	PrimeNOT Prime
13 31	NOT Prime	14 44	PrimeNOT Prime
15 14	PrimeNOT Prime	16 25	PrimeNOT Prime
17 20	PrimeNOT Prime	18 19	➢ Prime ☐ NOT Prime

Date:

Composite Numbers

PF 2 **Instructions:** Multiply each set of Prime Factors to see what Composite Number they make. (We recommend using a calculator for these exercises.) **2** $3 \times 3 = 9$ **1** $2 \times 2 =$ **4** $3 \quad 2 \times 3 = 6$ $4 2 \times 5 = 10$ $5 \quad 2 \times 2 \times 3 = 12$ $3 \times 5 = 15$ $2 \times 2 \times 2 = 8$ $5 \times 5 = 25$ $2 \times 3 \times 3 = 18$ $10 \quad 2 \times 3 \times 5 = 30$ $3 \times 3 \times 3 = 27$ $12 \quad 3 \times 3 \times 5 = 45$ **13** $2 \times 2 \times 3 \times 3 = 36$ **14** $2 \times 3 \times 5 \times 7 = 210$ $15 \quad 2 \times 3 \times 3 \times 3 = 54$ $16 \quad 2 \times 2 \times 2 \times 3 \times 7 = 168$ **17** $2 \times 2 \times 3 \times 5 = 60$ **18** $2 \times 2 \times 2 \times 5 \times 7 = 280$

Date:

PF 3

Factoring to Primes

Date:

PF 4

Factoring to Primes - Set 2

Date:

PF 5

More Prime Factorization Practice

Date:

Prime Factorization and Exponent Notation

PF 6

Review: Exponents are used to show repeated multiplication. For example, if you want to multiply the number 2 together 3 times, you could write $2 \times 2 \times 2$, but you could also use Exponent Notation and just write 2^{3.} The small '3' means multiply this number by itself 3 times. Here are a few examples so you can see the pattern. $3^2 = 3 \times 3 \qquad \qquad 4^4 = 4 \times 4 \times 4 \times 4$ $5^3 = 5 \times 5 \times 5$ $2^5 = 2 \times 2 \times 2 \times 2 \times 2$ **Instructions:** Rewrite the Prime Factorization shown using Exponent Notation. $2 \times 2 \times 2 \times 5 = 2^3 \times 5$ 1 $2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$ $3 \quad 2 \times 2 \times 2 \times 2 = 2^4$ $4 \quad 2 \times 2 \times 5 \times 5 = 2^2 \times 5^2$ $5 \quad 2 \times 2 \times 3 \times 3 \times 7 = \quad 2^2 \times 3^2 \times 7$ $2 \times 2 \times 2 \times 2 \times 7 = 2^4 \times 7$ $2 \times 2 \times 2 \times 5 \times 5 = 2^3 \times 5^2$ 7 $2 \times 2 \times 3 \times 5 \times 7 = 2^2 \times 3 \times 5 \times 7$ 8 $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 = 2^3 \times 3^4$ 9 $10 \quad 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7 = 2^3 \times 3^2 \times 7^2$ $11 \quad 2 \times 3 \times 3 \times 3 \times 5 \times 7 \times 7 = 2 \times 3^3 \times 5 \times 7^2$ $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 = 2^6 \times 3$ 12

Date:

Prime or Composite?

Instructions: In this list of every whole number up to 100, circle any Prime Numbers that you know. Then, use the answer key and circle any Prime Numbers that you may have missed. All the numbers that are not circled are Composite Numbers!

(NOTE: This is an advanced exercise and should be considered optional.)

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35
36	37	38	39	40
41	42	43	44	45
46	47	48	49	50
51	52	53	54	55
56	57	58	59	60
61	62	63	64	65
66	67	68	69	70
71	72	73	74	75
76	77	78	79	80
81	82	83	84	85
86	87	88	89	90
91	92	93	94	95
96	97	98	99	100