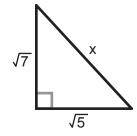
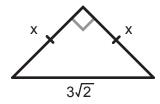

The Pythagorean Theorem

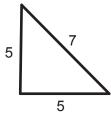
Tind the length of the unknown side 'x'.


$$3^{2} + x^{2} = 5^{2}$$
 $9 + x^{2} = 25$
 -9
 $x^{2} = 4$

> Find the length of the unknown side 'x'.


$$2^{2} + 6^{2} = x^{2}$$
 $4 + 36 = x^{2}$
 $40 = x^{2}$
 $x = \sqrt{40}$
or $2\sqrt{10}$
or $6.32...$

Find the length of the unknown side 'x'.


$$\sqrt{7}^2 + \sqrt{5}^2 = x^2$$
 $7 + 5 = x^2$
 $12 = x^2$
 $12 = x^2$
or $2\sqrt{3}$
or $3.46...$

Find the length of the unknown side 'x'.

$$x^{2} + x^{2} = (3\sqrt{2})^{2}$$
 $2x^{2} = (9\cdot2)$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$

5 Is this a RIGHT triangle?

Check:
$$5^2 + 5^2 \stackrel{?}{=} 7^2$$

 $25 + 25 \stackrel{?}{=} 49$
 $50 \neq 49$ No

If the longest side of a triangle is 10 meters, and the other two sides are 6 and 8 meters long, is it a RIGHT triangle?

Check:
$$6^2 + 8^2 \stackrel{?}{=} 10^2$$

 $36 + 64 \stackrel{?}{=} 100$
 $100 = 100$ Yes