The Pythagorean Theorem

. Find the length of the unknown side ' x '. $\begin{aligned} & 3^{2}+x^{2}=5^{2} \\ & 9+x^{2}=25 \\ &-9 \\ &-9 \\ & x^{2}=16 \end{aligned} \quad \begin{array}{r} \sqrt{x^{2}}=\sqrt{1} \\ x=4 \\ \end{array}$	2 Find the length of the unknown side ' x '. $\begin{aligned} 2^{2}+6^{2} & =x^{2} \\ 4+36 & =x^{2} \\ 40 & =x^{2} \end{aligned} \quad \begin{array}{r} \sqrt{x^{2}}=\sqrt{40} \\ x=\sqrt{40} \\ \text { or } 2 \sqrt{10} \\ \text { or } 6.32 \ldots \end{array}$
3 Find the length of the unknown side ' x '. $\begin{array}{r} \sqrt{7}^{2}+\sqrt{5}^{2}=x^{2} \\ 7+5=x^{2} \\ 12=x^{2} \end{array} \quad \begin{array}{r} \sqrt{x^{2}}=\sqrt{12} \\ x=\sqrt{12} \\ \text { or } 2 \sqrt{3} \\ \text { or } 3.46 \ldots \end{array}$	4. Find the length of the unknown side ' x '. $\begin{aligned} x^{2}+x^{2} & =(3 \sqrt{2})^{2} \\ 2 x^{2} & =(9 \cdot 2) \\ \frac{8 x^{2}}{8} & =\frac{18}{2} \end{aligned} \quad \begin{array}{r} x^{2}=9 \\ \sqrt{x^{2}}=\sqrt{9} \\ x=3 \end{array}$
5 Is this a RIGHT triangle? Check: $\begin{aligned} 5^{2}+5^{2} & \stackrel{?}{=} 7^{2} \\ 25+25 & \stackrel{?}{=} 49 \\ 50 & \neq 49 \quad \mathrm{No} \end{aligned}$	If the longest side of a triangle is 10 meters, and the other two sides are 6 and 8 meters long, is it a RIGHT triangle? $\text { Check: } \begin{aligned} 6^{2}+8^{2} & \stackrel{?}{=} 10^{2} \\ 36+64 & \stackrel{?}{=} 100 \\ 100 & =100 \text { Yes } \end{aligned}$

